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SUMMARY

Since fire prevention in spacecraft is never assured (minor fire incidents have, in fact,

occurred), a second-line defense of fire extinguishment is essential. Early spacecraft were

equipped with water and foam for extinguishing agents. The present Shuttle carries Halon 1301,

despite its well known environmental and reaction-product problems. If an extinguisher were dis-

charged during a Shuttle flight, the spacecraft would immediately be returned to Earth for clean-

up of the atmosphere and affected surfaces. For the future U.S. Space Station Freedom, the

specified agents are carbon dioxide in the U.S. laboratories and nitrogen in the hyperbaric

(decompression) chamber. The major challenge to spacecraft fire extinguishment design and opera-

tions is from the low-gravity (microgravity) environment, which minimizes buoyant, natural-

convective flows and profoundly influences extinguishment agent effectiveness, dispersal

and post-fire cleanup. The paper discusses the experience and knowledge of extinguishment in

microgravity, the fire-suppression problems anticipated in future spacecraft, and research needs

and opportunities.

INTRODUCTION

A spacecraft in low-earth orbit, such as the U.S. Shuttle, experiences a free-fall

condition, an environment popularly called zero gravity, but more correctly termed microgravity

because slight residual accelerations or disturbances are always present. The strong, upward

buoyant flow of hot combustion products observed in normal gravity is greatly reduced in low-

gravity fires, thus affecting the mass and energy transport to the flame zone and the resulting

fire characteristics (ref. I). Microgravity fires in still air thus tend to be cooler and

sootier than those in normal gravity and tend to spread slowly. On the other hand, microgravity

fires under low-speed convective flow (ventilation, for example) have been observed in paper-fuel

tests to have greater flammability limits and flame-spread rates than those in corresponding

normal gravity (ref. 2). Furthermore, other studies suggest that smoldering materials in low

gravity may readily transition to flaming combustion, due to reduced heat losses (ref. 3).

Several problems arise in preventive fire suppression or in extinguishment of established

fires in spacecraft. Probable fire scenarios include fire situations that are difficult to

access and penetrate (smoldering fires in waste containers, for example). The flame-cooling and

oxygen-dilution effectiveness of agents may be reduced by the negligible natural convection and

reduced mass and energy transport rates. The same changes in transport rates plus the strict

mass, volume, and energy limitations can also present formidable problems in the design of

effective agent storage and delivery systems. Finally, complete post-fire cleanup after extin-

guishment is critical in space, to prevent both immediate and long-term toxic and corrosive

hazards.

The scope of this paper is the review of spacecraft fire-suppression concepts and

practices, covering past and present spacecraft techniques, applicable findings in systems

ana]yses and microgravity combustion science, proposed systems for the primary human-crew space

mission of the future, the U.S. Space Station Freedom, and research needs and opportunities.



BACKGROUND

While materials for spacecraft should meet defined standards of low flammability, many com-

mon flammable materials, such as cotton toweling, paperproducts, films, sealants, and Velcro

tabs, have no effective substitutes. Their use is permitted in spacecraft through waivers spe-

cifying inventory control and fire-protected storage. Furthermore, while obvious ignition

sources are precluded, breakdowns of common equipment, such as heaters, electrical components,

and friction devices, can provide potential ignition energy (refs. i and 4). Thus, the

occurrence of minor fire incidents must be considered, and the second-line protection of fire

detection and extinguishment is essential for spacecraft fire safety (refs. 1 and 5).

While experience has shown that present protection on the Shuttle is adequate, there is

growing attention to the improvement of fire safety through research and technology. First,

analyses and experiments on microgravity combustion science have strengthened the understanding

and potential applications of this field (ref. 6). Second, changes in fire-safety practices

outside the space field also influence the technology of space (the phasing out of Halon 1301 use

is a good example, ref. 7). Finally, and perhaps most importantly, the approaching era of the

extended duration missions of the Shuttle and Space Station Freedom demands improvements and

innovations in fire safety, due to the complex nature of the anticipated designs and operations

(ref. 8).

The earliest U.S. human-crew spacecraft had no dedicated systems for fire extinguishing.

In the 100 percent-oxygen atmosphere of the Apollo spacecraft, the water-metering dispenser used

for drinking and freeze-dried food reconstitution served as an emergency fire extinguisher

(fig. I). This water gun was never needed for fire extinguishment in space; this may be for-

tunate because the later Skylab tests of Kimzey demonstrated the difficulty of controlling and

directing water sprays in space (ref. 9). The Apollo program also developed a foam extinguisher,

which was included in the protection system of the original U.S. space station project, Skylab

(fig. 2). This extinguisher generated a mixed-phase agent propelled by Freon and nitrogen gases.

The fluid-flow behavior of the extinguisher was demonstrated in space but not its fire-fighting

capabilities.

In the current U.S. Shuttle and its inhabited laboratory payloads (Spacelab and the future

Microgravity Laboratories), a Halon 1301 system is provided. The Shuttle system consists of

portable extinguishers plus fixed fire extinguishers installed in each of three electronic bays

(fig. 3). Ports in the instrument panels permit the insertion of extinguisher nozzles for access

to internal fires. The extinguishers have been discharged in space only for demonstration

purposes.

The Halon 1301 fire-extinguishing system design on the Shuttle is an adaptation of systems

used effectively in the cargo bays and other locations of aircraft. While external environmental

contamination is immaterial in orbiting spacecraft, the use of Halon extinguishment creates long-

term problems of toxic contamination and corrosion from the hydrogen halide reaction products,

which are not easily removable by the spacecraft environmental-control system. Immediately after

the discharge of an extinguisher on the Shuttle, however, a mission must be terminated and

returned to earth within a few orbits. Thus, no substitute agent is under consideration for the

Shuttle, because post-fire cleanup can be accomplished on the ground. For Space Station Freedom

in a permanent orbit, the long-term atmospheric contamination and component corrosion problems

from the reaction products cannot be ignored.

The review by Bluth (ref. 10) noted that there is a fire-extinguishing system in the only

current operational space station, the Soviet Mir. A recent NASA inspection-trip report (Loftus,



J.P., et al., unpublished, December 1989) identifies the agent as a foam, perhaps similar to the

agent used in the U.S. Skylab. A fire on the earlier Salyut 7 required both the discharge of an

extinguisher and venting of the cabin atmosphere. The atmosphere of the uninhabited space

station was replenished by a subsequent supply flight. Two minor incidents that occurred in the

U.S. Shuttle missions were both the result of short circuits that caused overheating of wire

insulation and brief smoldering. In each incident, the abnormal conditions were immediately

observed by the crew, and the incipient fire was suppressed by deenergizing the appropriate cir-

cuits. The fire detectors did not actuate, nor was a fire extinguisher discharged.

SELECTION OF EXTINGUISHING AGENTS FOR SPACE

For spacecraft use, extinguishing agents must meet a strict set of physical requirements in

addition to the effectiveness of fire suppression. There have been several system analyses or

tradeoff studies to evaluate candidate extinguishing agents for spacecraft use, based on assess-

ments of qualifications.

For the preliminary design of Freedom, a trade-off study (Opfell, J.: Fire Detection and

Fire Suppression Trade Study, Allied-Signal Aerospace Co. report, unpublished, September 1985)

ranked four candidate agents, carbon dioxide, Halon 1301, water, and nitrogen, on their response

to a range of typical fire situations (NFPA Class A, B, and C, for example). The study assigned

weights to 19 attributes for agent evaluation. As examples, the highest-weight attributes were

risk (from use of the agent), reliability, accommodation to Freedom, developmental cost, initial

cost, and crew usage. The selected agent, carbon dioxide, was on the basis of a slight numerical

superiority, perhaps because the use of many attributes diluted the sensitivity of the analysis.

A generic system study, based on a 1987 thesis by Sheridan (ref. 11), examined requirements for

two spacecraft scenarios, extinguishment of a localized fire (NFPA Class A, B, or C) and suppres-

sion or explosion prevention of a large hydrogen fire (possibly from environmental-control system

leakage). For the localized fire, the study ranked CO2, N2, dry chemicals, foam, Halon 1301, and

deionized water for effectiveness, toxicity, system cost and mass, and technical readiness. For

the large fire, the study limited the candidates to COz, N2, and Halon 1301 and substituted module

pressure buildup for toxicity. The results of the Sheridan analysis were the selection of CO2

for the localized fire and Halon 1301 for the large fire. A recent analysis by Reuther (ref. 12)

evaluated candidate agents of water, nitrogen, Halon 1301, carbon dioxide, and foam for a local-

ized spacecraft fire scenario of smoldering, with respect to seven critical requirements, as well

as flame-zone radiation effects. The preferred agent was again CO2. The study also selected Nz

for a scenario of atmospheric inerting to prevent explosion of a major hydrogen leak and fire,

although this choice was a hypothesis because there were insufficient data for an effective

analysis.

Table i is a summary of relevant selection factors for the three principal extinguishants,

Halon 1301, CO2, and N2. Gaseous agents such as these have obvious advantages for delivery under

space conditions. In the past, as noted, liquid water and mixed-phase agents have been specified

for, if not actually used in, early spacecraft; and research proponents continue to urge research

on nongaseous agents, such as water and mixed-phase foams (ref. 8).

EXPERIMENTAL STUDIES ON FIRE SUPPRESSION IN LOW GRAVITY

Early Tests

The original concern of studies of fire suppression for spacecraft was primarily for fire

control in enriched-oxygen atmospheres and not necessarily for low-gravity control. Neustein



et al. (ref. 13) developed a nozzle design in 1968 that generated a hollow cone of nitrogen (or

helium) to exclude oxygen from a fire zone for extinguishment in an enriched-oxygen, microgravity

atmosphere. While some flammability tests were conducted in low-gravity, parabolic airplane

flights, extinguishment tests on burning cloth samples were conducted only under normal-gravity

conditions. Kimzey (ref. 9) conducted an extensive set of fire experiments in a combustion

chamber with a 60 percent-O2 atmosphere on the U.S. space station Skylab in 1974. Until

recently, these tests were the only combustion-related study conducted in a spacecraft. In the

course of this study, Kimzey attempted to terminate some tests through two means of extinguish-

ment, venting to vacuum and water sprays, with discouraging results. The vacuum venting inten-

sified the fire through forced convection before extinguishing it. The water spray broke up into

isolated droplets. Only a few droplets struck the burning material, and they tended to scatter

the flaming material rather than extinguish the flame.

Studies with Halon 1301

With the introduction of Halon 1301 as the extinguishing agent in the Shuttle, small-scale

tests were conducted on the effectiveness of this agent at the NASA Lewis Research Center

(_aggard, J.B.: unpublished data, May i975). Figure 4 shows the experimental results of

extinguishment-limit boundaries for cellulose fuels at normal gravity. The test conditions

encompassed the two Shuttle conditions: a normal atmosphere of 21 percent 02 in N2 (air), and a

prebreathing atmosphere prior to an extravehicular activity of 40 percent 02 (currently 30

percent) in N2 at a reduced total pressure. An air flow of 11-cm/s velocity opposed to the flame

spread represented the nominal flow of Shuttle ventilation. Naturally occurring buoyant air

flows probably augmented the forced flow. The extinguishment limits are very sensitive to the

imposed air velocity even at normal gravity. Figure 5 indicates that extinguishment boundaries

reach maxima around 20 cm/s a_r velocity, where the greatest concentration of agent is required.

There is an interesting comparison of these boundaries to recent microgravity results showing

that flammability limits and flame-spread rates also reach maxima over a range of 8 to 20 cm/s

opposed-flow velocities (ref. 2). The microgravity counterpart to figure 5, that is, the map of

extinguishment maxima influenced by low-velocity opposed flows, has yet to be developed.

The cited studies also included still-air microgravity extinguishment limits obtained in

free-fall, drop-tower experiments. Table 2 is a comparison of results from a series of tests.

It shows that, for normal-pressure atmospheric air, only about.half the quantity of agent is

required for extinguishment in microgravity compared to that in normal gravity. At the low-

total-pressure, enriched-oxygen condition, more agent is required for extinguishment, and the

microgravity quantity is on]y slightly less than that in normal gravity. In contrast to these

solid-fuel findings, Ronney (ref. 14) found little difference in Halon 1301 extinguishment limits

between quiescent microgravity and normal-gravity, upward-burning cases, for the combustion of

premixed methane-air mixtures.

Studies with Other Gaseous Extinguishants

Microgravity tests under air-dilution atmospheres serve to estimate nitrogen extinguishment

requirements. Olson (ref. 15) reported an ignition limit of 16 mol _ 02 for downward burning of

thin-paper fuels in normal gravity. This is equivalent to N2 suppression by the addition of

31 mole percent N2 to the original air atmosphere. The same test series showed an ignition limit

of 21 percent 02 in microgravity. Hence, only a trivial addition of nitrogen to air would

suppress the paper flame in low gravity.



Figure6 showsexperimentalresults on the effect of severaldiluent atmosphereson
microgravityflame-spreadrates andflame-extinctionlimits, providinganestimateof the
effectivenessof the diluents asextinguishingagents(ref. 16,with recent additions by Diet-

rich). The results shown are for tests under atmospheres with fixed 02 partial pressures of

21 kPa (the air value) diluted with inert gas to reach the stated 02 concentrations. Although

the extinction limits shown are at differing total pressures (which may have only secondary

effects on results), they are reasonable indicators of agent effectiveness. For example, roughly

half the molar quantity of carbon dioxide (dilution to 33 percent 02) accomplishes extinguishment

compared to the quantity of N2 (dilution to 21 percent 02). -

FIRE-EXTINGUISHMENT PROPOSALSFOR THE SPACESTATION FREEOOM

The focus of the U.S. space program is on the development of the Space Station Freedom, a

multi-purpose community to be placed in a permanent low-Earth orbit for scientific, earth-

observation, vehicle-tending, and commercial activities. A major objective of Freedom is to pro-

vide the environment for scientific and commercial research and developmental operations at a

relatively large scale under microgravity. The need for greatly improved approaches to fire

safety in Freedom is evident, due to the complexity of the spacecraft and its operations, the

varied human and unattended activities proposed, and its long-term mission demanding fire control

in place (refs. 4 and 8).

While many of the features of Freedom are still subject to change, the preliminary design

of the fire-suppression system is generally established. The fire detection and suppression sub-

system in Freedom falls under the Environmental Control and Life Support System (ECLSS). For the

laboratory, habitation, and logistics modules under the responsibility of the United States, the

preferred extinguishing agent is carbon dioxide, supplied from commonstorage or from portable

extinguishers. Figure 7 is a representation of the laboratory module, which will be composed of

four rack arrays around a central corridor. The extinguishing agent is stored in two redundant

tanks in separate rack locations, interconnected to deliver CO2 to any of the racks, the general

arrays, or the corridor. Figure 8 shows the proposed agent delivery arrangement in a typical

rack. The CO2 agent is dispensed from a perforated tube to flood the rock upon actuation,

through either a remotely controlled or a manual valve. A port in the fire detection and

suppression panel permits insertion of a portable extinguisher nozzle, if necessary.

An obvious and often suggested technique to control major fires in space is through venting

to the surrounding atmosphere. The small-scale tests of Kimzey (ref. 9) have already demonstra-

ted that venting provides sufficient forced convection to increase the fire burning rate, a

process that may continue for several minutes before the overall oxygen content is reduced. The

gaseous supplies of Freedom are limited to slightly more than the quantity needed to support one

evacuation and subsequent resupply cycle. Thus, venting to the environment is likely to be

considered only as a last resort for an uncontrollable fire.

Fire safety, including fire-suppression provisions, on Freedom is also influenced by some

of its unusual design features (Heitzman, J.; and Overmyer, C.: Space Station Freedom Contingency

Operations Scenarios, McDonnell Douglas Astronautics unpublished report, April 1990). Freedom is

an international program, and two of the laboratory modules are the responsibilities of the Euro-

pean Space Agency (ESA) and Japan. Table 3 lists the fire-suppression proposals for the three

laboratories. In contrast to the centralized CO2 system for the U.S. modules, the ESA laboratory

specifies a Halon 1301 system, with individual supply bottles at each rack. The Japanese

laboratory specifies a CO2 system, also with individual bottles. Each international partner is



proceedingindependentlyin its shareof the design,but eventuallysomecommonalityof the fire-
suppressionsystemsmustbedevised. All of themoduleswill be interconnectedthroughthe data
managementsystemfor alarmandreaction. Thedegreeof automationandthe tradeoffs between
automatedandmanualdecisionsfor extinguisheractuationareyet to bedetermined.Clearly,
automaticagentreleaseupona false alarmor trivial incidentmaybeasdisastrousasa delayed
manualresponseto analarm. Furthermore,a fire maydamagethe automateddatamanagement
system,forcing the dependenceonmanualresponse.

Anadditionaldesignissuein Freedom is the hyperbaric chamber, located in an air lock,

used to condition crew members for an extravehicular activity or to treat possible decompression

sickness following such an activity. Because of the high pressure of several atmospheres and the

human occupation of the chamber, the preferred agent for this chamber is nitrogen to be dispensed

by flooding, to avoid toxic effects of carbon dioxide in large quantities.

CONCERNS AND RESEARCH NEEDS IN SPACECPJ_F'I"FIRE EXTINGUISHMENT

Carbon Dioxide Selection

As already noted, NASA and its prime contractor, Boeing Aerospace, prefer carbon dioxide

for the Freedom internal module fire-extinguishing agent. While an unpublished 1985 trade-off

study concluded that CO2 showed a slight superiority, other qualitative factors promote its

selection convincingly. Carbon dioxide extinguishing systems can use proven technology. The

agent is removable from the atmosphere by the existing Environmental Control and Life Support

System (ECLSS). Competing systems with N2, water, and Halons all suffer disadvantages of mass

penalties, electrical conductivity, difficulty of dispersion, or toxic byproducts, as applicable.

Carbon dioxide systems do require a larger storage mass than Halon 1301 due to the lower agent

efficiency, but a CO2 system may have a lower overall cost.

Two drawbacks to CO2 usage are noted. First, local concentrations of CO2 in a fire zone

may approach 20 mol 9, which is by far a toxic concentration especially in combination with a low

concentration of carbon monoxide. Careful control of the discharge into racks can prevent

excessive leakage of agent into the general volume of the module. For this reason, as mentioned,

nitrogen is preferred for protection of the inhabited hyperbaric chamber. The second drawback is

that, in the unlikely event of a major fire, stores of CO2 may be insufficient. This may be a

factor in the selection of Halon 1301 in the Sheridan analysis for the scenario of a large

hydrogen fire (ref. 11). The probability of a combustible gas accumulation in Freedom from a

leak in ECLSS processing, releasing hydrogen or methane byproducts, is small, however, for it

requires multiple failures of containment, gas sensors, and ECLSS performance monitors.

Microgravity Extinguishment Research

Practical considerations of agent storage, dispersion, and post-fire cleanup in low gravity

are selection factors as important as extinguishing effectiveness. The prototype CO2 system for

Freedom is to be qualified in prior ground tests for both effectiveness and reliability.

Unfortunately, the correlation of the normal-gravity qualification to the eventual low-gravity

performance is unknown, and appropriate experiments are critically needed.

Reuther (ref. 12) and Youngblood and Seiser (ref. 17) both propose experiments in a combus-

tion chamber where a small-scale fire is initiated and then extinguished with candidate agents to

measure the efficiency, delay time, effects of fuel type, likelihood to reignite, and reaction

products for low-gravity extinguishment. Reuther suggests a flow system with multiple canisters

of smoldering carbon for the experiment. Youngblood and Seiser suggest a sample-exchange system

o



for solid fuels in a quiescent or a flowing atmosphere. Either experiment proposal is designed

to investigate a variety of gaseous or liquid-spray (water) agents. These studies can be

initiated in sounding rocket or airplane free-fall facilities, prior to space flight experiments.

Youngblood and Vedha-Nayagam (ref. 18) also identify further applied research and techno-

logy development in the field of space extinguishment. Suggested projects include specific

research on extinguisher performance in inhabited hyperbaric chambers, applied technology on

high-capacity environmental clean-up units for post-fire applications, and development of innova-

tive space fire protection, such as fire blankets.

CONCLUDING REMARKS

This paper is a review of past, present, and proposed techniques for fire suppression in

spacecraft. While fire events may be of low probability, present human-crew spacecraft are pro-

vided with fire protection including extinguishers. The low-gravity environment in orbiting

spacecraft influences combustion, heat transport, and mass transport, greatly affecting extin-

guishment agent effectiveness, storage, dispersion, and clean-up system performance. The

increasing complexity anticipated with the advent of the U.S. Space Station Freedom also compli-

cates the issues of spacecraft fire extinguishment. The current application of Halon 1301 agent

in the Shuttle is justified by the nature of the short-term missions, but alternative agents are

essential for Freedom. Clearly, continued research and technology activities should be directed

toward securing knowledge of the unusual features of fires in space for application to practical,

effective, and conservative spacecraft fire suppression systems.
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Figure 1.--Apollo water-dispenser fire extinguisher.
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Figure 2.--Apollo Skylab foam fire extinguisher.
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Figure 3.---Shuttle Ha]on 1301 fire extinguishers.
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Figure 5.--Exporimental effects of opposed
atmospheric flow velodties on extinguish-
ment boundaries for 0.21 mm thick cellu-
lose. Normal-gravity conditions (from J.B.
Haggard, unpublished data, 1975).
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Figure 6.--Experimental flame-spread rates for
0.076 mm thick paper under different oxygen_
diluent atmospheres. Quiescent, microgravity
conditions with oxygen quantity fixed at 21 kPa
partial pressure (air value).
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Station Freedom.
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